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Abstract

To capture global non-consecutive and long-distance seman-
tic information, graph convolutional network (GCN) has been
widely used for text classification. While GCN-based meth-
ods have achieved great success in offline evaluations, they
usually construct fixed document-token graphs and cannot
perform inference on new documents. It is still a challenge to
apply GCNs in online systems which need to infer continual
text data. In this work, we present a Continual GCN model,
short as ContGCN, to generalize inferences from observed
documents to unobserved documents. Concretely, we pro-
pose a novel global-token-local-document paradigm to dy-
namically update the document-token graph in every batch
for any online system during both training and testing phases.
Moreover, we design an occurrence memory module and a
self-supervised contrastive learning objective to update the
proposed ContGCN in any online system in a label-free man-
ner. Extensive offline experiments conducted on five public
datasets demonstrate that our proposed ContGCN can signif-
icantly improve inference quality. A 3-month A/B test on our
internal online system shows ContGCN achieves 8.86% per-
formance gain compared with state-of-the-art methods.

Introduction
As one of the fundamental tasks in natural language pro-
cessing, text classification, for decades, has been extensively
studied and successfully applied in various application sce-
narios (Xu et al. 2019a; Abaho et al. 2021). To capture the
global non-consecutive and long-distance semantic informa-
tion such as token co-occurrence in a corpus, graph convo-
lutional network (GCN) has been widely used for text clas-
sification (Yao, Mao, and Luo 2019; Lin et al. 2021).

Some GCN-based methods (Li et al. 2019) build a ho-
mogeneous graph for document classification by taking
each document as a node and modeling non-semantic inter-
document relations such as citation links. To further ex-
ploit document-token semantic information, another line of
GCN-based methods constructs heterogeneous document-
token graphs, where each node represents a document or
a token, and each edge is a correlation factor between
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two nodes. However, they commonly follow a local-token-
global-document (LTGD) paradigm to construct a fixed
graph with all labeled training documents, unlabeled test
documents, and observed tokens, and perform transductive
inference. Given a new document with unobserved tokens,
the trained GCN model cannot make inference on it because
neither the document nor the unobserved tokens are included
in the graph. Therefore, while these methods are effective
for offline evaluations, they cannot be deployed in online
systems to infer streaming text data.

To address this challenge, in this paper, we propose a new
global-token-local-document (GTLD) paradigm to dynami-
cally construct a document-token graph, and based on which
we present a continual GCN model (ContGCN) for text
classification. Specifically, we take the vocabulary of a pre-
trained language model (PLM) such as BERT (Devlin et al.
2019) as the global token set, so a new document can be
tokenized into seen tokens from the vocabulary. We further
form a local document set with the present documents (e.g.,
those in the current batch). The document-token graph then
consists of tokens in the global token set and documents in
the local document set. The edge weights of the graph are
dynamically calculated according to an occurrence memory
module with historical token correlation information, and
document embeddings are generated with pretrained seman-
tic knowledge. In this way, ContGCN is empowered to per-
form inductive inference on streaming text data.

Furthermore, to address data distribution shift (Luo et al.
2022) which is prevalent in online services, we design a
label-free online updating mechanism for ContGCN, sav-
ing the cost and effort for periodical offline updates of the
model with new text data. Specifically, we fine-tune the oc-
currence memory module according to the distribution shift
of streaming text data and update the network parameters
with a carefully designed self-supervised contrastive learn-
ing objective.

We conduct extensive experiments to evaluate the effec-
tiveness of our ContGCN model on five real-world public
datasets, i.e., 20NG, R8, R52, Ohsumed, and MR. Com-
pared with state-of-the-art models, ContGCN achieves fa-
vorable performance in both offline and online evaluations
due to the proposed GTLD paradigm and label-free online
updating mechanism. Moreover, we have deployed Cont-
GCN in our online text classification system that processes



thousands of textual comments daily, which further verifies
its effectiveness and efficiency. To summarize, our contribu-
tions are listed as follows:

• We propose a novel global-token-local-document
paradigm and a continual GCN model to infer unob-
served streaming text data, which, to our knowledge, is
the first attempt to use GCN for online text classification.

• We design a label-free updating mechanism based on an
occurrence memory module and a self-supervised con-
trastive learning objective, which enables to update our
proposed ContGCN online with unlabeled documents.

• Extensive offline experiments conducted on five real-
world datasets and online A/B tests demonstrate the ef-
fectiveness of our proposed ContGCN model.

Preliminary
Graph Convolutional Network
A GCN (Welling and Kipf 2016) is a graph encoder that
aggregates the knowledge from node neighborhoods. It is
composed of a stack of graph convolutional layers. Formally,
we use G = (V,E) to denote a graph, where V (n = |V |)
and E are sets of nodes and edges, respectively. Note that
each node v ∈ V is self-connected, i.e., (v, v) ∈ E. We
use X ∈ Rn×d to represent node representations, where d is
the embedding dimension. To capture the information from
neighborhoods, a symmetric adjacency matrix A ∈ Rn×n

is introduced, where Aij is the correlation score of node vi
and vj and Aii = 1. Before passing into the convolutional
layer, a normalization operation is performed on the adja-
cency matrix, formulated as:

Ã = D− 1
2 AD

1
2 , (1)

where D is a degree matrix and Dii =
∑

j Aij . For k-th of
total h convolutional layers, the latent node embedding can
be calculated as:

H(k) = ρ
(

ÃH(k−1)Wk

)
, (2)

where k ∈ {1, 2, · · · ,h}, ρ is the activation function, Wk ∈
Rd×d is a trainable matrix of k-th layer, and specifically,
H(0) = X.

LTGD-based GCN for Text Classification
The text classification task aims to categorize documents
into different classes. Formally, we use D(m = |D|) to de-
note a set of documents, which can be split into a training set
Dtrain ⊂ D and a testing set Dtest ⊂ D. Each document
can be represented as s = [t

(s)
1 , t

(s)
2 , · · · , t(s)

|s| ] ∈ D, where

t
(s)
i ∈ T is a token in the global vocabulary T (u = |T |).

In the text classification domain, existing GCN-based
methods (Yao, Mao, and Luo 2019; Qiao et al. 2018; Lin
et al. 2021) mainly construct document-token heterogeneous
graphs under a local-token-global-document paradigm. Pre-
cisely, they first construct a local vocabulary Tlocal ⊂ T with
size u′ which contains all seen tokens in the document set D.
Then, they construct the graph with a fixed structure, whose
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Figure 1: Comparison of the adjacency matrices. Left: local-
token-global-document (LTGD) paradigm (e.g., BertGCN).
Right: our global-token-local-document (GTLD) paradigm.

graph nodes include local tokens t ∈ Tlocal and global doc-
uments s ∈ D, i.e., n = u′ + m. In this way, they form the
adjacency matrix, as shown in Figure 1a, including an inner-
token symmetric matrix A(1) ∈ Ru′×u′

, a document-token
matrix A(2) ∈ Rm×u′

, and an inner-document identity ma-
trix A(3) ∈ Rm×m. It will be first initialized and then fixed
in the model training. Finally, the GCN-enhanced document
embedding can be formulated as:

X̄ = GCN(A,X), (3)

After we extract the document embedding of the training
set, it will next be passed into an MLP (multilayer percep-
tron) classifier for label prediction.

Method
While GCN has been widely adopted in text classification
due to its ability to capture high-order neighborhood in-
formation and global non-consecutive semantic knowledge,
the local-token-global-document paradigm hinders the exist-
ing GCN-based methods from reasoning about unobserved
documents. Thus, we propose a novel global-token-local-
document paradigm where token nodes are provided by the
entire vocabulary and document nodes are alterable. By dy-
namically updating the document-text graph, our GTLD-
based continual GCN model, or ContGCN, reveals its flexi-
bility to handle unobserved data.

Figure 2 illustrates the overview architecture of our Cont-
GCN model, including adjacency matrix generator, node en-
coder, and GCN encoder. Expressly, ContGCN takes a batch
of documents as input. In parallel, the adjacency matrix gen-
erator updates the adjacency matrix based on the occurrence
memory module and current batch, while the node encoder
produces content-based node embedding. Then, the GCN
encoder is applied to capture the global-aware node repre-
sentations. Finally, we take two training objectives to train
the ContGCN model.

The Global-token-local-document Paradigm
Unlike the local-token-global-document paradigm which
takes local tokens (Tlocal) and global documents (D) as fixed
graph nodes, our proposed global-token-local-document
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Figure 2: Framework of our ContGCN model. Green dotted lines represent operations before each phase of model training
or testing. Two key components, i.e., AM Generator and Node Encoder, dynamically conduct adjacency matrix and node
embedding, which are then fed into the GCN encoder. Finally, our ContGCN model is trained with a classification loss and an
anti-interference contrastive loss.

paradigm constructs a document-token graph with global to-
kens (T ) and dynamic local documents (i.e., a batch of doc-
uments B = {s(1), s(2), · · · s(b)} ⊂ D where b is the batch
size).

Our ContGCN model is designed under the global-token-
local-document paradigm. We set our global tokens as the
vocabulary used for PLM tokenizers. Thus, unseen words
can be tokenized into sub-words, i.e., several seen tokens in
the vocabulary. When a new batch of data is fed into the
model, the adjacency matrix and node embedding will be
dynamically updated by the adjacency matrix generator and
node encoder, respectively.

Adjacency Matrix Generator
As shown in Figure 1b, the GTLD-based adjacency matrix
has a similar composition to the LTGD-based one: an inner-
token matrix A(1) ∈ Ru×u which is a phased-fixed matrix
learned from the global token occurrence knowledge of the
corpus, a document-token matrix A2 ∈ Rb×u that is ac-
tively calculated based on the current batch, and an inner-
document identity matrix A(3) ∈ Rb×b to prevent each doc-
ument from being influenced by other samples during model
learning or reasoning. By phased-fixed, A(1) will be refined
when the model enters a new training or testing phase, with
the emergence of new corpora in the company of new token
co-occurrence knowledge, as shown in the green dotted lines
of Figure 2.

Occurrence Memory Module (OMM) is an incremental
historical statistics recorder, including a sentence (not doc-
ument) counter s ∈ Z1 recording the number of sentences,
a token occurrence counter c ∈ Zu recording the number of
sentences where a token appears, and a token co-occurrence
counter C ∈ Zu×u recording the number of times for two

tokens appearing in one sentence. OMM records the global
non-consecutive semantic information and brings about the
following advantages: 1) it fulfill the dynamic calculation
of the adjacency matrix for any batch of documents; 2)
it holds a large amount of previous general and domain-
specific knowledge without re-calculating in updating. We
implement the OMM updating algorithm in a simple yet effi-
cient manner, as illustrated in Algorithm 1. As demonstrated
in Figure 2, it is initialized by the Wikipedia corpus, and up-
dated by training data or testing data before model training
or testing. Thus, A(1) will be phase-wisely updated through
PPMI (positive pointwise mutual information), defined as:

A(1)
i,j =

{
1, if i = j

max
(
log

(
sCi,j

cicj

)
, 0
)
. else

(4)

For each document s ∈ B, we apply TF-IDF (term
frequency-inverse document frequency) to obtain document-
token correlation, which is calculated by:

A(2)
s,t =

g(s, t)
|s|

log
s

ct + 1
, (5)

where g(s, t) represents the number of times the token t ap-
pears in the document s. As for the inner-document matrix
A(3), it can be formulated as:

A(3)
i,j =

{
1, if i = j

0. else
(6)

Finally, the adjacency matrix A can be composed by:

A =

(
A(1) A(2)T

A(2) A(3)

)
. (7)



Algorithm 1: Continual OMM updating algorithm
def update(corpus_or_dataset, omm):
omm.load()
omm.s += len(corpus_or_dataset)
for doc in corpus_or_dataset:
for sent in doc:

for ti in set(sent):
omm.c[ti] += 1

for ti in sent:
for tj in sent:
omm.C[ti][tj] += ti != tj

omm.store()

Node Encoder
Since the pretrained language model (PLM) (Devlin et al.
2019; Liu et al. 2019; Yang et al. 2019a) validates its ef-
fectiveness for text modeling in various scenarios due to its
general knowledge learned from a large corpus, we leverage
it as a document encoder to capture semantic information for
each document s ∈ B:

E(s) = PLM(s) ∈ Rl×d, (8)

where l ≥ |s| is the maximum document length for PLM, as
short documents will append special <PAD> tokens, to align
the length with documents from the same batch, according to
BERT (Devlin et al. 2019). Note that we average the hidden
states of the first and last transformer layers following (Li
et al. 2020; Su et al. 2021). Next, we perform an average
pooling operation on E(s) to obtain the unified document
embedding d(s) ∈ Rd, and meanwhile, construct sample-
specific token embedding matrix M(s) ∈ Ru×d, computed
by:

M(s)
i =

{
E(s)
k , if exists k,where i = t

(s)
k

0. else
(9)

More precisely, we map E(s) into the global-token embed-
ding space, while unseen token embedding is set to 0 vec-
tor. After we parallelly perform the above operations on the
batch data, we concatenate the token embedding and docu-
ment embedding to obtain node embedding. Following Bert-
GCN (Lin et al. 2021), we form a batch-wise node embed-
ding Xn ∈ R(u+b)×d, defined as:

Xn
i =

{
0, if i ≤ u

d(s(i−u)). else
(10)

However, such node embedding will be affected by doc-
ument interference due to the node message passing in-
side the GCN network. To avoid the mutual interference
within batches, we form sample-specific node embedding
Xp(s) ∈ R(u+b)×d by:

Xp(s)
i =


M(s)

k , if i ≤ u

d(s), if s(i−u) = s
0, else

(11)

where s(i−u) is the (i − u)-th sample in current batch B.
In other words, we sample-wisely map M(s)

k and d(s) into the
global-token-local-document latent space. We name Xn and
Xp(s) as jammed and unjammed node embedding.

GCN Encoder
When adjacency matrix (A) and node embeddings (un-
jammed Xp(s) and jammed Xn) are produced, the GCN en-
coder is applied to capture global-aware node representa-
tions. We use X̄p(s) and X̄n to represent the GCN-enhanced
unjammed and jammed node representations based by Equa-
tion 3. Then, we extract the GCN-enhanced document em-
bedding Zi = X̄p(s(i))

i+u ∈ Rb×d, sample-wise unjammed

document embedding Zp(s)
i = X̄p(s)

i+u ∈ Rb×d, and jammed
document embedding Zn

i = X̄n
i+u ∈ Rb×d.

Training Objectives
For training the model, we adopt a classification task and a
contrastive task as our training objectives.

Document Classification Task is the primary task tai-
lored for the text classification scenario. Following Bert-
GCN (Lin et al. 2021), a MLP classifier is used to infer the
probability distribution over all classes with a softmax acti-
vation function. Thus, the loss function can be defined as:

CLS : Rd → Rc, (12)

Lcls = − 1

b

b∑
i=1

log
(
CLS (Zi)li

)
, (13)

where c is the total number of document classes, and 1 <
li ≤ c is the class label of i-th document.

Anti-interference Contrastive Task is an auxiliary task
designed to enable the GCN encoder to avoid the inter-
ference between documents. Specifically, for each jammed
document embedding Zn

i , it is encouraged to approximate

the unjammed document embedding Zp(s(i))
i . Meanwhile,

we use other documents in the batch as negative samples.
Note that Zp(s) is detached. Thus, the loss function is:

Laic = − 1

b

b∑
i=1

log
(

y(s(i))
i

)
,where (14)

y(s(i)) = softmax
(

Zp(s(i))ZnT
i

)
∈ Rb. (15)

The overall loss function is the combination of the classi-
fication and contrastive tasks:

L = Lcls + λLaic, (16)

where λ is a balancing parameter.
Label-free Updating Mechanism (LUM). The occur-

rence memory module and the anti-interference contrastive
task enables to continually update our ContGCN model with
incoming unlabeled text data during inference. Hence, we
name it label-free updating mechanism (LUM).



Model Training and Update
Our ContGCN will be continually tuned in different stages.
Stage I: Before training. Following BertGCN (Lin et al.
2021), we first post-pretrain the PLM by the classification
task on the PLM-enhanced document embeddings d(s) to
speed up model convergence, as indicated in Figure 2 (the
black dotted line). Stage II: During training. We train
the ContGCN model with the multi-task training objective
(Eq. 16). Stage III: During inference. When new test data
arrives, we first update the occurrence memory module with
Algorithm 1, and then employ the auxiliary anti-interference
contrastive task (Eq. 14) to finetune the ContGCN model.

Experiments
Experimental Setups
Datasets. Following (Lin et al. 2021), we conduct experi-
ments on five real-world text classification datasets, i.e., 20-
Newsgroups (20NG), Ohsumed, R52 Reuters, R8 Reuters,
and Movie Review(MR) datasets. The statistics of datasets
are summarized in Table 1. For all datasets, we randomly
selected 10% of the training set as the validation set.

Baselines and Variants of Our Method. To verify the
effectiveness of our proposed ContGCN model, we com-
pare with three types of state-of-the-art models: 1) tra-
ditional GCN-based models without leveraging pretrained
general semantic knowledge, including TextGCN (Yao,
Mao, and Luo 2019) and TensorGCN (Liu et al. 2020);
2) transformer-based PLMs, including BERT (Devlin et al.
2019), RoBERTa (Liu et al. 2019) and XLNet (Yang et al.
2019b); 3) models combining GCN with PLM, including
TG-Transformer (Zhang and Zhang 2020), BertGCN (Lin
et al. 2021) and RoBERTaGCN (Lin et al. 2021). As our
ContGCN can be plugged by different PLMs, we adopt
BERT, XLNet, and RoBERTa as our variants, namely
ContGCNBERT, ContGCNXLNet, and ContGCNRoBERTa.

Implementation Details We adopt the Adam opti-
mizer (Kingma and Ba 2015) to train the network of our
ContGCN model and baseline models, which are consistent
in the following parameters: the number of graph convolu-
tional layers (if using) is set to 3, the embedding dimension
is set to 768, and the batch size is set to 64. In the post-
pretraining phase, we set the learning rate for PLM to 1e-4.
During training, we set different learning rates for PLM and
other randomly initialized parameters (including the GCN
network) following (Lin et al. 2021). Precisely, we set 1e-
5 to finetune RoBERTa and BERT, 5e-6 to finetune XLNet,
and 5e-4 to other parameters. We average ten experimental
results as the final evaluation results. We release the source
code for reproducibility 1.

Comparison with Offline State-of-the-art Methods
We conduct an offline comparison between our ContGCN
method with state-of-the-art baselines on five datasets. Ta-
ble 2 summarizes the overall performance of all meth-
ods, from which we can make the following observations:

1 https://github.com/Jyonn/ContGCN

Dataset 20NG R8 R52 Ohsumed MR
# Docs 18,846 7,674 9,100 7,400 10,662
# Training 11,314 5,485 6,532 3,357 7,108
# Test 7,532 2,189 2,568 4,043 3,554
# Classes 20 8 52 23 2
Avg. Length 221 66 70 136 20

Table 1: Dataset statistics.

Models 20NG R8 R52 Ohsumed MR
TextGCN 86.3 97.1 93.6 68.4 76.7
TensorGCN 87.7 98.0 95.0 70.1 77.9

BERT 85.3 97.8 96.4 70.5 85.7
RoBERTa 83.8 97.8 96.2 70.7 89.4
XLNet 85.1 98.0 96.6 70.7 87.2

TG-Transformer - 98.1 95.2 70.4 -
BertGCN 89.3 98.1 96.6 72.8 86.0
RoBERTaGCN 89.5 98.2 96.1 72.8 89.7

ContGCNBERT 89.4 98.3 96.9 73.1 86.4
ContGCNXLNet 89.7 98.5 97.0 73.1 88.7
ContGCNRoBERTa 90.1 98.6 96.6 73.4 91.3

Table 2: Comparison of our ContGCN model with state-of-
the-art baselines which are underlined. The best results are
in boldface.

First, PLM-only methods mostly outperform GCN-only
methods due to their pre-learned semantic knowledge. As
the document lengths of the 20NG dataset are incredibly
long, GCN-only methods can construct more document-
token edges for better semantic comprehension. In contrast,
for the MR dataset, GCN-only methods reveal their weak-
ness in handling documents with short lengths . Second,
PLM-empowered GCN methods enjoy the strength of both
PLM and GCN models, which outperform PLM-only and
GCN-only methods. Third, our ContGCN achieves state-
of-the-art performance in five datasets; chances are that:
1) by employing the proposed global-token-local-document
paradigm, our ContGCN model reaps the benefits from gen-
eral semantic knowledge initialized from a large Wikipedia
corpus; 2) proposed contrastive learning objective attenuates
inter-document interference. Specifically, ContGCNRoBERTa

achieves the state-of-the-art performance on four datasets.

Comparison on Online Learning Scenario
Figure 3 illustrates the performance in online learning sce-
nario where training/updating data is incremental while test-
ing data is fixed. Based on the results, we can draw the
following observations: First, since existing GCN-based
methods (i.e., TextGCN and RoBERTaGCN) construct fixed
graphs by original corpus, they are incapable of being up-
dated with or reasoning about unobserved data. Hence, their
performance remains unchanged over time, as the dotted
lines demonstrate in Figure 3a. Second, as the updating data
increments, the performance of all updateable models shows
an overall upward trend. Third, our ContGCN method out-
performs all methods at the different proportions of updat-
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Figure 3: Comparison between our ContGCN model and
baselines in an online learning scenario. We divide the 20NG
dataset into training, testing set, and updating set according
to 2:2:6. For each subsequent training or finetuning, we take
10% of the training set as the validation set. For each model,
we first use the training set to learn an initial version. Then,
we divide the updating set into 6 proportions equally, and
feed each proportion one-by-one to finetune the model. The
finetuning time ratio is calculated by current proportion fine-
tuning time over the first proportion finetuning time.

Models 20NG R8 Ohsumed
ContGCNRoBERTa 90.1 98.6 73.4

- Wikipedia Init 89.9 98.2 73.1
- OMM Updating 89.6 98.3 73.0
- Contrastive Loss 89.7 98.5 73.2

ContGCNXLNet 89.7 98.5 73.1
- Wikipedia Init 89.8 98.3 72.8
- OMM Updating 89.4 98.2 72.7
- Contrastive Loss 89.5 98.2 73.0

Table 3: Influence of the Wikipedia initialization on OMM,
OMM updating, and anti-interference contrastive objective.

ing stage. Fourth, due to the flaws of LTGD-based GCN
methods, we design a RoBERTaGCNscratch model to re-
train from scratch with all previous data in each updating
stage. As demonstrated in Figure 3b, the finetuning time ra-
tio of ContGCN and RoBERTa fluctuates around 1, indicat-
ing that they are updated at similar times for each proportion.
However, due to the retraining strategy, the updating time of
RoBERTaGCNscratch tends to grow linearly as data grows,
which hinders the possibility of its online learning.

Ablation Study
First, we study the effect of different components of Con-
tGCN, including the Wikipedia initialization, OMM updat-
ing, and anti-interference contrastive task on the offline per-
formance. Based on the results from Table 3, we can con-
clude that: First, for the 20NG dataset, we notice that the
Wikipedia initialization serves a little function, probably due
to the long length of documents that carries enough non-

Variants 1/6 2/6 3/6 4/6 5/6 6/6
ContGCN∗ 86.4 87.3 88.1 88.6 89.0 89.6

ContGCN 86.3 87.1 87.8 88.2 88.7 89.1
ContGCNα 86.1 86.9 87.5 87.9 88.3 88.7
ContGCNβ 86.0 86.2 86.4 86.6 86.9 87.1

Table 4: Variants of ContGCNRoBERTa in online learn-
ing scenario on the 20NG dataset. ContGCN∗ is retrained
from scratch with all previous data in each updating
stage. ContGCNα is updated without the contrastive loss.
ContGCNβ is updated without LUM.
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Figure 4: Influence of the λ, i.e., the proportion of auxiliary
anti-interference contrastive task used for loss calculation.
The relative accuracy represents the difference between the
accuracy at λ = λ0 and that at λ = 0.

consecutive knowledge during OMM updating. Apart from
this, after removing each components, most performance of
both ContGCNRoBERTa and ContGCNXLNet on three datasets
declines, which verifies the effectiveness of these compo-
nents. Second, models without OMM updating get the worst
performance, which indicates that non-consecutive semantic
information is vital to model training and testing.

Next, we study the updating strategy of ContGCN on
the online learning scenario. As depicted in Table 4, we
can make the following observations. First, compared Con-
tGCN with ContGCNα and ContGCNβ , both OMM updat-
ing and contrastive loss reveal their effectiveness to boost the
performance in online scenario. Second, compared with re-
training from scratch, i.e., ContGCN∗, ContGCN is updated
with less time and computational resources, while achieves
competitive and utterly acceptable performance.

Impact of Anti-interference Contrastive Learning
Here, we study the balancing parameter λ which weights the
auxiliary anti-interference contrastive loss. We conduct the
experiments on the 20NG, R8 and Ohsumed datasets with
ContGCNRoBERTa model, considering the λ from {0.001,
0.01, 0.02, 0.03, 0.05, 0.10, 0.20}. As demonstrated in
Figure 4, we can make the following observations: First,
datasets vary in their dependence on auxiliary tasks. Typi-



Models 0th 1st 2nd 3rd
RoBERTaGCN 91.7 N/A N/A N/A

RoBERTa 87.6 86.8 85.2 83.5
ContGCNβ 92.8 90.3 89.9 88.2
ContGCN 92.8 92.5 92.0 90.9

Table 5: Comparison of our ContGCN model with
RoBERTa baseline used in the industrial scenario. The per-
centage represents the ratio of the current performance to the
initial (0th) performance. All models are first trained offline
in the 0th month based on initial labeled dataset. After de-
ployed, our ContGCN perform online learning with LUM.
ContGCNβ is a static network with parameters fixed after
training on 0-th month data.

cally, when λ is set to 0.03, 0.02, and 0.05, it achieves the
best performance on the 20NG, R8, and Ohsumed datasets,
respectively. Second, for each dataset, the evaluation perfor-
mance increases first and then decreases as λ increases. For
some cases (e.g., λ = 0.20 on the 20NG dataset), the per-
formance would be worse than that when not applying the
auxiliary task. Hence, it is critical to make a trade-off for
selecting the λ value.

Online A/B Testing
We have deployed the ContGCN on an industrial system
for huawei public opinion analyzing system, serving mil-
lions of documents monthly. The task is modeled via an
optimized variant of the RoBERTa (Liu et al. 2019) called
RoBERTawwm-ext (Xu 2021), tailored for Chinese text clas-
sification, which will still be abbreviated as RoBERTa be-
low and in Table 5. To leverage global non-consecutive
occurrence information, we introduce GCN into online
text classification systems. Due to the inherent shortage,
RoBERTaGCN fails (i.e., gets N/A results in the table)
to reason about unobserved documents despite obtaining
better performance than RoBERTa initially. Thus, we ap-
ply the GTLD-based ContGCN model to learn document-
token knowledge. After these two models are trained of-
fline in the 0th month, we deploy them for online compar-
ison. As illustrated in Table 5, our ContGCN (specifically,
ContGCNRoBERTa) has achieved accuracy gains of 5.94%,
6.57%, 7.98%, and 8.86% over the baseline RoBERTa
model in the 0th, 1st, 2nd, and 3rd month, respectively. Be-
sides, due to the distribution shift of public opinions, the ac-
curacy will drop slightly over time. However, our ContGCN
model with the still maintains 98.0% performance after three
months, much higher than 95.3% of the baseline model. Fur-
thermore, by removing the label-free update mechanism, the
performance will drop largely, which authenticates the on-
line learning capability of our ContGCN model.

Related Work
Graph neural networks (Scarselli et al. 2008) (GNNs)
have achieved growing applications for arbitrarily graph-
structured data via extracting dependencies on graph nodes

and transferring messages through graph edges (Hamil-
ton, Ying, and Leskovec 2017; Xu et al. 2019b). For-
mally, GNN-based methods can be divided (Wu et al.
2020) into graph auto-encoder (Kipf and Welling 2016;
Cao, Lu, and Xu 2016) (GAEs), graph convolutional net-
works (Yao, Mao, and Luo 2019; Lin et al. 2021), graph
spatial-temporal networks (Yu, Yin, and Zhu 2018), graph
attention networks (Zhang et al. 2018), and graph generative
networks (De Cao and Kipf 2018). As one of the most suc-
cessful variant, graph convolutional networks (GCNs) has
been widely explored in various scenarios in natural lan-
guage processing domain, such as question answering (Song
et al. 2018) and relation extraction (Zhang et al. 2018).

Both academia and industry are devoted to the exploration
of text classification. Early work (Jacovi, Sar Shalom, and
Goldberg 2018; Sari, Rini, and Malik 2019) employs tra-
ditional language models such as convolutional neural net-
works (Krizhevsky, Sutskever, and Hinton 2012) or long-
short term memory networks (Hochreiter and Schmidhu-
ber 1997) to capture text sequences. Recently, Transformer-
based pretrained language models (PLMs) achieve remark-
able success over existing methods in diverse domains such
as recommender system (Liu et al. 2022) and text classi-
fication (Devlin et al. 2019; Liu et al. 2019). Despite the
rich semantic information of individual text sequence be-
ing effectively captured by these methods, the global non-
consecutive and long-distance semantic information, such
as token co-occurrence in a corpus is not leverage. In re-
cent years, the GCNs have attracted much attention in the
text classification domain (Yao, Mao, and Luo 2019; Lin
et al. 2021), due to their ability to model non-structured data
and capture global dependence, such as high-order neigh-
borhood information. Unlike existing GCN-based meth-
ods, which mainly construct fixed graphs and are inca-
pable of reasoning about unobserved documents, we pro-
pose a global-token-local-document paradigm to empower
our ContGCN model to test new data in online systems
effortlessly. We find some GNN-based methods (Li et al.
2019; Xie et al. 2021; Wang, Han, and Poon 2022) construct
homogeneous graph for documents, however, we focus on
constructing graph nodes with documents and token (Yao,
Mao, and Luo 2019) to capture their semantic relations.

Conclusion

To deploy GCN-based text classification methods to online
industrial systems, we propose a ContGCN model with a
novel global-token-local-document paradigm and a label-
free updating mechanism, which endow the model an ca-
pability of inferring unobserved documents and enable to
continually update the model during inference time. To the
best of our knowledge, this is the first attempt to use GCN
for online text classification. Extensive online and offline
evaluations validate the effectiveness of our proposed Con-
tGCN model, which achieves favorable performance com-
pared with various state-of-the-art methods.
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